Перед прочтением этого материала рекомендуем изучить:
-
Атомарное строение металлов
-
Полиморфизм и анизотропия
Локальные несовершенства (
дефекты) в строении кристаллов присущи всем металлам. Эти нарушения идеальной структуры твердых тел оказывают существенное влияние на их физические, химические, технологические и эксплуатационные свойства. Без использования представлений о дефектах реальных кристаллов невозможно изучить явления пластической деформации, упрочнение и разрушение сплавов и др.
Дефекты кристаллического строения удобно классифицировать по их геометрической форме и размерам:
1)
точечные (нульмерные) малы во всех трех измерениях, их размеры не больше нескольких атомных диаметров - это вакансии, межузельные атомы, примесные атомы;
2)
линейные (одномерные) малы в двух направлениях, а в третьем направлении они соизмеримы с длиной кристалла - это дислокации, цепочки вакансий и межузельных атомов;
3)
поверхностные (двумерные) малы только в одном направлении и имеют плоскую форму - это границы зерен, блоков и двойников, границы доменов;
4)
объемные (трехмерные) имеют во всех трех измерениях относительно большие размеры - это поры, трещины;
Точечные дефекты - это вакансии, т. е. узлы решетки, в которых атомы отсутствуют в результате их перехода на поверхность кристалла (рис. 1, а), или атомы, внедрившиеся в межузлие (рис.1, б) решетки.
Рис. 1 - Дефекты кристаллической решетки:
а - вакансия; б - дислоцированный(внедрившийся) атом;
Вышедший из равновесного положения атом называют дислоцированным, а оставшееся пустое место в узле решетки - вакансией.
Вакансии и
дислоцированные атомы вызывают искажение решетки, распространяющееся примерно на пять параметров.
Дислоцированный атом и вакансии непрерывно перемещаются по решетке вследствие неравномерного распределения энергии между атомами. Количество такого рода дефектов очень велико, например, в 1 см³ кадмия при температуре 300 °С наблюдается 10¹³ вакансий, а время существования вакансии всего лишь 0,0004 с.
Перемещаясь беспорядочно по кристаллической решетке, вакансии встречаются и скапливаются, образуя другой вид дефектов решетки, который называется дислокация и относится уже к линейным дефектам. Наиболее распространены дислокации двух типов: линейные или краевые и винтовые или спиральные. Дислокации можно легко представить путем смещения одной части кристалла по отношению к другой, но не по всей плоскости, а только по ее части. При этом часть соседних атомов в плоскости смещается по отношению к своим соседям, а часть плоскости остается без нарушения взаимного расположения атомов.
В случае линейной дислокации (рис.2, а) сдвиг происходит по плоской поверхности, а в случае винтовой дислокации (рис. 2, б) сдвиг идет по винтовой поверхности. Величина единичного смещения плоскостей характеризуется вектором Бюргере b (вектор
b на рис. 2), который отражает как абсолютную величину сдвига, так и его направление (правая и левая винтовая дислокация, положительная и отрицательная краевая дислокация).
Рис. 2 - Схема образования дислокаций в кристалле при приложении внешней силы P:
а - линейной(краевой); б - винтовой(спиральной);
Чистые металлы получить технически очень трудно и по этой причине в металле присутствуют примеси различного происхождения. В зависимости от природы примесей и условий попадания их в металл они могут быть растворены в металле или находиться в виде отдельных включений. На свойства металла наибольшее влияние оказывают чужеродные растворенные примеси, атомы которых могут располагаться в пустотах между атомами основного металла (атомы внедрения) или в узлах кристаллической решетки основного металла (атомы замещения). Если атомы примесей значительно меньше атомов основного металла, то они образуют растворы внедрения (рис. 3, а), а если больше - то образуют растворы замещения (рис. 3, б). В том и другом случаях решетка становится дефектной и искажения ее влияют на свойства металла.
Рис. 3 - Искажение кристаллической решетки примесными атомами:
а - внедрения; б - замещения;
Наличие дислокаций и несовершенство кристаллов, с одной стороны, оказывают ослабляющий эффект на металл, а при определенных условиях дефекты могут упрочнять металл. Упрочняющий эффект обусловлен взаимодействием дислокаций друг с другом и с различными несовершенствами кристаллического строения. Сущность процесса упрочнения состоит в торможении дислокаций, создании препятствий для их перемещения.
Взаимодействие дислокаций многообразно и сложно. Они могут взаимодействовать в одной или разных плоскостях, иметь одноименный или разноименный знак, но если искажение решетки в результате их взаимодействия увеличивается, то возрастает сопротивление деформации кристалла. Поверхностные дефекты наблюдаются прежде всего на границах зерен.
Граница зерен - это поверхность, по обе стороны от которой кристаллические решетки различаются пространственной ориентацией (рис. 4). Эта поверхность является двумерным дефектом, имеющим значительные размеры в двух измерениях, а в третьем - его размер соизмерим с атомным. Границы зерен - это области высокой дислокационной плотности и несогласованности строения граничащих кристаллов. Атомы на границе зерен имеют повышенную энергию по сравнению с атомами внутри зерен и, как следствие этого, более склонны вступать в различные взаимодействия и реакции. На границах зерен отсутствует упорядоченное расположение атомов.
Рис. 4 - Схема взаимного расположения зерен металла:
а - граница между взаимно наклоненными зернами; б - граница между взаимно смещенными(скрученными) зернами;
Каждое из зерен металла состоит из отдельных фрагментов, а последние - из блоков, образующих мозаичную структуру. Зерна металла взаимно разориентированы на несколько градусов, фрагменты разориентированы на минуты, а блоки, составляющие фрагмент, взаимно разориентированы всего лишь на несколько секунд (рис. 5). На границах зерен в процессе кристаллизации металла скапливаются различные примеси, образуются дефекты, неметаллические включения, оксидные пленки. В результате металлическая связь между зернами нарушается и прочность металла снижается.
Рис. 5 -Схема кристалла(зерна) металла с его границами(ширина границ 5-10 межатомных расстояний):
а - общий вид; б - блочная(мозаичная) структура внутри зерна;
Состояние границ зерен металла оказывает большое влияние на их свойства.